Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

3D CFD Coolant System Simulation for Vehicle Drive-Cycle

2021-09-22
2021-26-0407
The present work deals with the 3-D, transient, system level CFD simulation of an automotive coolant system using a 3D CFD solver Simerics MP+®. The system includes actual CAD of radiator, cooling jacket, coolant pump, bypass valve and thermostat valve. This work is in continuation of the work done by Srinivasan et al. [1] where wax melting, conjugate heat transfer, Fluid Structure Interaction (FSI) of the valve had been solved. Thermostat valve was controlled by wax phase change model which also incorporates the hysteresis effect of wax melting and solidification. The previous work dealt with the simulation of complete cycle, opening, and closing of the thermostat valve system. Besides the physics considered in the previous study, the current model also includes the treatment of cavitation to account for the presence of dissolved gases and vaporization of the liquid coolant.
Technical Paper

3D CFD Model of DI Diesel Low Pressure Fuel Pump System

2017-10-08
2017-01-2304
This paper discusses the holistic approach of simulating a low pressure pump (LPP) including test stand flow dynamics. The simulation includes all lines and valves of the test stand representing realistic test operating conditions in the simulation. The capability to capture all line dynamics enables a robust design against resonances and delivers high-quality performance data. Comparison with actual test data agrees very well giving us confidence in the prediction capability of proposed method and CFD package used in the study. Despite the large spatial extent of the simulation domain, Simerics-MP+ (aka PumpLinx) is able to generate a feasible mesh, together with fast running speed, resulting in acceptable turn-around times. The ability to still model small gaps and clearance of the LPP very efficiently enables inclusion of realistic tolerances as experienced on hardware.
Technical Paper

3D CFD Modeling of a Biodiesel-Fueled Diesel Engine Based on a Detailed Chemical Mechanism

2012-04-16
2012-01-0151
A detailed reaction mechanism for the combustion of biodiesel fuels has recently been developed by Westbrook and co-workers. This detailed mechanism involves 5037 species and 19990 reactions, which prohibits its direct use in computational fluid dynamic (CFD) applications. In the present work, various mechanism reduction methods included in the Reaction Workbench software were used to derive a semi-detailed biodiesel combustion mechanism, while maintaining the accuracy of the master mechanism for a desired set of engine conditions. The reduced combustion mechanism for a five-component biodiesel fuel was employed in the FORTÉ CFD simulation package to take advantage of advanced chemistry solver methodologies and advanced spray models. Simulations were performed for a Volvo D12C heavy diesel engine fueled by RME fuel using a 72° sector mesh. Predictions were validated against measured in-cylinder parameters and exhaust emission concentrations.
Technical Paper

3D CFD Modeling of an Electric Motor to Predict Spin Losses at Different Temperatures

2024-04-09
2024-01-2208
With the advent of this new era of electric-driven automobiles, the simulation and virtual digital twin modeling world is now embarking on new sets of challenges. Getting key insights into electric motor behavior has a significant impact on the net output and range of electric vehicles. In this paper, a complete 3D CFD model of an Electric Motor is developed to understand its churning losses at different operating speeds. The simulation study details how the flow field develops inside this electric motor at different operating speeds and oil temperatures. The contributions of the crown and weld endrings, crown and weld end-windings, and airgap to the net churning loss are also analyzed. The oil distribution patterns on the end-windings show the effect of the centrifugal effect in scrapping oil from the inner structures at higher speeds. Also, the effect of the sump height with higher operating speeds are also analyzed.
Journal Article

3D CFD Simulation of Hydraulic Test of an Engine Coolant System

2022-03-29
2022-01-0207
Designing an efficient vehicle coolant system depends on meeting target coolant flow rate to different components with minimum energy consumption by coolant pump. The flow resistance across different components and hoses dictates the flow supplied to that branch which can affect the effectiveness of the coolant system. Hydraulic tests are conducted to understand the system design for component flow delivery and pressure drops and assess necessary changes to better distribute the coolant flow from the pump. The current study highlights the ability of a complete 3D Computational Fluid Dynamics (CFD) simulation to effectively mimic a hydraulic test. The coolant circuit modeled in this simulation consists of an engine water-jacket, a thermostat valve, bypass valve, a coolant pump, a radiator, and flow path to certain auxiliary components like turbo charger, rear transmission oil cooler etc.
Technical Paper

3D Numerical Characterization of a Multi-Holes Injector in a Quiescent Vessel and Its Application in a Single-Cylinder Research Engine Using Ethanol

2017-11-07
2017-36-0360
The fuel injection in internal combustion engines plays a crucial role in the mixture formation, combustion process and pollutants' emission. Its correct modeling is fundamental to the prediction of an engine performance through a computational fluid dynamics simulation. In the first part of this work a tridimensional numerical simulation of a multi-hole’s injector, using ethanol as fuel, is presented. The numerical simulation results were compared to experimental data from a fuel spray injection bench test in a quiescent vessel. The break up model applied to the simulation was the combined Kelvin-Helmholtz Rayleigh-Taylor, and a sensitivity analysis of the liquid fuel penetration curve, as well on the overall spray shape was performed according to the model constants. Experimental spray images were used to aid the model tuning. The final configuration of the KH-RT model constants that showed best agreement with the measured spray was C3 equal to 0.5, B1, 7 and Cb, 0.
Journal Article

3D Numerical Study of Pressure Loss Characteristics and Filtration Efficiency through a Frontal Unplugged DPF

2010-04-12
2010-01-0538
The main objective of this paper is to investigate the performance of partial filtration DPF substrates using 3-D Computational Fluid Dynamics (CFD) methods. Detailed 3-D CFD simulations were performed for real world sizes of DPF inlet and outlet channel geometries. Two concepts of partial filters were studied. The baseline geometry was a standard DPF with the front plugs removed. The second concept was to eliminate half of outlet plugs in addition to the inlet plugs to improve the pressure drop performance. The total filter efficiency was defined in current study to quantify the overall filter filtration efficiency which combines the effects from wall flow efficiency and flow through efficiency. For baseline case, 45% of total exhaust gas was found to go through the inlet channels, and the total trap efficiency was as high as 60%. However, only a 10% pressure loss reduction was found due to the removal of the outlet channel plugs from the DPF inlet side.
Journal Article

3D Numerical Study of Pressure Loss Characteristics and Soot Leakage Through a Damaged DPF

2009-04-20
2009-01-1267
Diesel Particulate Filters (DPF) are widely used to meet 2007 and beyond EPA Particulate Matter (PM) emissions requirements. During the soot loading process, soot is collected inside a porous wall and eventually forms a soot cake layer on the surface of the DPF inlet channel walls. A densely packaged soot layer and reduced pore size due to Particulate Matter (PM) deposition will reduce overall DPF wall permeability which results in increasing pressure drop across the DPF substrate. A regeneration process needs to be enacted to burn out all the soot collected inside the DPF. Soot mass is not always evenly distributed as the distribution is affected by the flow and temperature distribution at the DPF inlet. As a result, the heat release which is determined by the burn rate is locally dependent. High temperature gradients are often found inside DPF substrate as a result of these locally dependent burn rates.
Technical Paper

3D Simulationson Premixed Laminar Flame Propagation of iso-Octane/Air Mixture at Elevated Pressure and Temperature

2015-03-10
2015-01-0015
This paper aims to validate chemical kinetic mechanisms of surrogate gasoline three components fuel by calculating one-dimensional laminar burning velocity of iso-octane/air mixture. Next, the application of level-set method on premixed combustion without consideration the effect of turbulence eddies on flame front is also studied in three-dimensional computational fluid dynamic (3D-CFD) simulation. In the 3D CFD simulation, there is an option to calculate laminar burning velocity by using empirical correlations, however it is applicable only for particular initial pressure and temperature in spark ignition engine cases. One-dimensional burning velocities from lean to rich of iso-octane/air mixture are calculated by using CHEMKIN-PRO with detailed chemistry and transport phenomena as a function of different equivalence ratios, different unburnt temperature and pressure ranges.
Technical Paper

3D-CFD Flow Structures in Journal Bearings

2009-11-02
2009-01-2688
Hydrodynamic radial journal bearings under unsteady load, which are common for automotive applications, are exposed to cavitation, e.g. flow, suction, shock and exit cavitation. The fluid mechanic description of the flow in journal bearings takes advantage of the small bearing clearance, which allows the reduction of the Navier-Stokes equations and leads to the Reynolds equation. The Reynolds equation is two-dimensional, the radial pressure gradient and the radial velocity component are neglected. However, the equation includes the surface velocities, oil density and viscosity and describes the relation between hydrodynamic pressure and local clearance. With the introduction of a cavitation index or a mass flow coefficient a powerful method to carry out numerical studies can be created, which allows the calculation of flow properties and the prediction of regions where the lubrication film disintegrates.
Technical Paper

3D-CFD Methodologies for a Fast and Reliable Design of Ultra-Lean SI Engines

2022-06-14
2022-37-0006
The continuous pursuit of higher combustion efficiencies, as well as the possible usage of synthetic fuels with different properties than fossil-ones, require reliable and low-cost numerical approaches to support and speed-up engines industrial design. In this context, SI engines operated with homogeneous ultra-lean mixtures both characterized by a classical ignition configuration or equipped with an active prechamber represent the most promising solutions. In this work, for the classical ignition arrangement, a 3DCFD strategy to model the impact of the ignition system type on the CCV is developed using the RANS approach for turbulence modelling. The spark-discharge is modelled through a set of Lagrangian particles, whose velocity is modified with a zero-divergence perturbation at each discharge event, then evolved according to the Simplified Langevin Model (SLM) to simulate stochastic interactions with the surrounding gas flow.
Technical Paper

3D-CFD Modeling of Conventional and Alternative Diesel Combustion and Pollutant Formation - A Validation Study

2007-07-23
2007-01-1907
An improved version of the ECFM-3Z combustion model coupled with advanced models for NO and soot formation has been implemented in the CFD code FIRE and validated with respect to its applicability to conventional and alternative Diesel combustion. For this purpose the set of models was applied to the calculation of combustion and pollutant formation in a high-speed DI Diesel engine for selected operating points adopting a large number of DoE based combustion system parameter variations. Assessment of the models' performance was enabled via comparison of the calculation results with the corresponding experimental data. Good agreement of calculated and measured in-cylinder pressure traces as well as pollutant formation trends could be observed for both the conventional and alternative Diesel combustion modes for the investigated parameter variations.
Technical Paper

3D-CFD Simulation of DI-Diesel Combustion Applying a Progress Variable Approach Accounting for Detailed Chemistry

2007-10-29
2007-01-4137
A chemical sub-model for realistic CFD simulations of Diesel engines is developed and demonstrated by application to some test cases. The model uses a newly developed progress variable approach to incorporate a realistic treatment of chemical reactions into the description of the reactive flow. The progress variable model is based on defining variables that represent the onset and temporal development of chemical reactions before and during self ignition, as well as the stage of the actual combustion. Fundamental aspects of the model, especially its physical motivation and finding a proper progress variable, are discussed, as well as issues of practical implementation. Sample calculations of Diesel-typical combustion scenarios are presented which are based on the progress-variable model, showing the capability of the model to realistically describe the ignition-and combustion phase.
Journal Article

3D-CFD Virtual Engine Test Bench of a 1.6 Liter Turbo-Charged GDI-Race-Engine with Focus on Fuel Injection

2013-09-08
2013-24-0149
In the last years motorsport is facing a technical revolution concerning the engine technology in every category, from touring car championships up to the F1. The strategy of the car manufacturers to bring motorsport engine technology closer to mass production one (e.g. turbo-charging, downsizing and direct injection) allows both to reduce development costs and to create a better image and technology transfer by linking motorsport activities to the daily business. Under these requirements the so-called Global Race Engine (GRE) concept has been introduced, giving the possibility to use one unique engine platform concept as basis for different engine specifications and racing categories. In order to optimize the performance of this kind of engines, especially due to the highly complex mixture formation mechanisms related to the direct injection, it is nowadays mandatory to resort to reliable 3D-CFD simulations.
Technical Paper

3D-PIV Measurement and Visualization of Streamlines Around a Standard SAE Vehicle Model

2011-04-12
2011-01-0161
In CFD (Computational Fluid Dynamics) verification of vehicle aerodynamics, detailed velocity measurements are required. The conventional 2D-PIV (Two Dimensional Particle Image Velocimetry) needs at least twice the number of operations to measure the three components of velocity ( u,v,w ), thus it is difficult to set up precise measurement positions. Furthermore, there are some areas where measurements are rendered impossible due to the relative position of the object and the optical system. That is why the acquisition of detailed velocity data around a vehicle has not yet been attained. In this study, a detailed velocity measurement was conducted using a 3D-PIV measurement system. The measurement target was a quarter scale SAE standard vehicle model. The wind tunnel system which was also designed for a quarter scale car model was utilized. It consisted of a moving belt and a boundary suction system.
Technical Paper

3DCFD-Modeling of a Hydrogen Combustion-Process with Regard to Simulation Stability and Emissions

2023-06-26
2023-01-1209
In the context of the energy transition, CO2-neutral solutions are of enormous importance for all sectors, but especially for the mobility sector. Hydrogen as an energy carrier has therefore been the focus of research and development for some time. However, the development of hydrogen combustion engines is in many respects still in the conception phase. Automotive system providers and engineering companies in the field of software development and simulation are showing great interest in the topic. In a joint project with the industrial partners Robert Bosch GmbH and AVL Germany, combustion in a H2-DI-engine for use in light-duty vehicles was methodically investigated using the CFD tool AVL FIRE®. The collaboration between Robert Bosch GmbH and the Institute for Mobile Systems (IMS) at Otto von Guericke University Magdeburg has produced a model study in which model approaches for the combustion of hydrogen can be analyzed.
Technical Paper

74 ENGINE SCAVENGING OPTIMIZATION

2002-10-29
2002-32-1843
Automotive pollutant emissions have been drastically restricted during the last ten years. These emission standards are now concerning small two-stroke engine. In order to reach future emission standard, it is essential to improve the scavenging flow, and especially the trapping efficiency of the engines. It is also interesting to have a tool for predicting the scavenging performances of an engine before the firing engine situation, which takes place late in the time scale of a development. A special test bench has been developed by D2T Group to visualize and quantify the scavenging process. It was also modelled with CFD tools, and a good correlation was observed between calculations and experimentations. This shows a good potential to reduce time and money spent in an engine development.
Journal Article

A 0D Phenomenological Approach to Model Diesel HCCI Combustion with Multi-Injection Strategies Using Probability Density Functions and Detailed Tabulated Chemistry

2009-04-20
2009-01-0678
More and more stringent restrictions concerning the pollutant emissions of ICE (Internal Combustion Engines) constitute a major challenge for the automotive industry. New combustion strategies such as LTC (Low Temperature Combustion), PCCI (Premixed Controlled Compression Ignition) or HCCI (Homogeneous Charge Compression Ignition) are promising solutions to achieve the imposed emission standards. They permit low NOx and soot emissions via a lean and highly diluted combustion regime, thus assuring low combustion temperatures. In next generation of ICE, new technologies allow the implementation of complex injection strategies in order to optimize the combustion process. This requires the creation of numerical tools adapted to these new challenges. This paper presents a 0D Diesel HCCI combustion model based on a physical 3D CFD (Computational Fluid Dynamics) approach.
Technical Paper

A 1-D Simulation Model for Analysis and Optimization of Gearbox Rattle Noise

2017-06-05
2017-01-1780
In the design or match process of vehicle powertrain system, gearbox rattle is a common NVH problem which directly affects passengers’ judgment on the quality and performance of vehicle. During the development process of a passenger car, prototype vehicles have serious gear rattle problem. In order to efficiently and fundamentally control this problem, this work first studied the characteristics and mechanisms of the gearbox rattle. The study results revealed that the torsional vibration of powertrain system was the root cause of gearbox rattle. Then a simulation model of the full vehicle was built with the aid of Simulink® toolbox, which is a graphical extension to MATLAB® for modeling and simulation of variety of systems. With this model, the sensitivity analysis and parametrical optimization were performed, and the simulation results indicated that the dual-mass flywheel (DMF) was the best measure to control the rattle.
Technical Paper

A 1D Method for Transient Simulations of Cooling Systems with Non-Uniform Temperature and Flow Boundaries Extracted from a 3D CFD Solution

2015-04-14
2015-01-0337
The current work investigates a method in 1D modeling of cooling systems including discretized cooling package with non-uniform boundary conditions. In a stacked cooling package the heat transfer through each heat exchanger depends on the mass flows and temperature fields. These are a result of complex three-dimensional phenomena, which take place in the under-hood and are highly non-uniform. A typical approach in 1D simulations is to assume these to be uniform, which reduces the authenticity of the simulation and calls for additional calibrations, normally done with input from test measurements. The presented work employs 3D CFD simulations of complete vehicle in STAR-CCM+ to perform a comprehensive study of mass-flow and thermal distribution over the inlet of the cooling package of a Volvo FM commercial vehicle in several steady-state operating points.
X